Bureau of Meteorology
X

About

The BOM Blog gives you the background and insider info on weather, climate, oceans, water and space weather—as well as the latest on the work of the Bureau.

Comments

We welcome participation in the comments section of our blog; however, we are not able to respond to all comments and questions and your comments may take a little time to appear. The blog is monitored from 9 am to 5 pm Monday–Friday.

Our community includes people of all ages and backgrounds and we want this to be a safe and respectful environment for all. To keep the discussion interesting and relevant, please:

  • respect other people and their opinions;
  • keep your comments on topic and succinct;
  • say why you disagree or agree with someone;
  • comment constructively—in a way that adds value to the discussion.

When commenting, please don't:

  • make defamatory, libellous, false or misleading comments;
  • use obscene, insulting, racist, sexist or otherwise discriminatory or offensive language;
  • post personal information about yourself or others, such as private addresses or phone numbers;
  • promote commercial interests;
  • violate the intellectual property rights of others;
  • violate any laws or regulations;
  • provoke others, distort facts or misrepresent the views of others; or
  • post multiple versions of the same view or make excessive postings on a particular issue.

We won’t publish comments that are not in line with these standards. Blocking/removal of content or banning of users is at our discretion.

There is no endorsement, implied or otherwise, by the Bureau of any material in the comments section. Users are fully responsible for the content they submit.

Commenting is available via a Facebook plugin, which can only be accessed by those with Facebook accounts.

You can contact us at socialmedia@bom.gov.au.

Copyright | Disclaimer | Privacy

X

Contact our social media team at socialmedia@bom.gov.au

Explainer: how is rain forecast?

Explainer: how is rain forecast?

"Is it going to rain?" It's one of the most frequently asked questions of our meteorologists, and one of the most challenging weather elements to predict. So, how does the Bureau forecast rainfall, and how will you know whether to pack an umbrella—or batten down the hatches?


What causes rain?

Clouds are simply millions of tiny water droplets suspended in the air, and these tiny water droplets form when the water vapour in the atmosphere cools and condenses. Cooling of the water vapour in the atmosphere occurs when air is forced to rise.

Mechanisms to make air rise range from broad scale systems such as cold fronts and tropical cyclones leading to large cloud masses, to showers and thunderstorms from small (less than 10 km in diameter), isolated clouds formed by local effects.

Once the cloud forms the cloud droplets collide with each other and grow, and eventually become too heavy to remain suspended in the air, and so they fall to the ground as rain. The process by which droplets merge is what's known as "coalescence".

Image: the nature of thunderstorms means rainfall can be very isolated. Thunderstorm near Windorah, Qld. Credit: Australian Sky & Weather.

Types of precipitation

Generally, we see two types of precipitation: convective and stratiform. Convective precipitation is usually associated with showers and thunderstorms—often producing those isolated bursts of heavy rainfall.

Stratiform precipitation on the other hand is usually light to moderate, and associated with stratiform "layer" type cloud found in the low and middle levels of the atmosphere. Stratiform clouds tend to produce uniform, widespread rainfall—you'll often see this type of rain with cold fronts and northwest cloud bands, for example.

Forecasting rainfall amounts

To work out the amount of rainfall, computer models and forecasters use "precipitable water" which provides information about how much water vapour is available in the atmosphere for any approaching weather systems to draw in. Precipitable water is measured using information from weather balloons and water vapour imagery from weather satellites.

Our computer weather models forecast precipitation guidance at 3 or 6 hourly intervals, indicating the areas where rain might fall, and how much. We look at a number of different models and if they're all in consensus, this gives us more confidence in a rain event happening. However, if they're showing different scenarios, this gives us less confidence.

In very basic terms, high values of precipitable water occur when the atmosphere is warm and moist, and high precipitable water values can lead to heavy rainfall totals, such as those in northern Australia in summer.

Image: satellite imagery showing water vapour in the atmosphere.

Where is it likely to fall?

To determine whether rainfall is going to be widespread or isolated in nature, we look at what's known as the vertical stability of the atmosphere, which is an indication of how high the clouds can grow to.

If the atmosphere is stable this leads to flat, layer-type cloud which typically means large areas of mostly uniform rainfall totals. If the atmosphere is unstable then we get clouds that can be very tall, have gaps between them and produce rainfall that is much more variable in nature.

This type of variable, isolated rainfall is referred to as "showers" and is usually the reason why one town can receive significant rainfall and another town just 20 km away can get nothing.

You can usually tell if this will be the case by looking at the forecast, as the rainfall range will be large, e.g. 2 to 15 mm. On the other hand, when the rainfall range shows reasonably large totals but a relatively small range like 15 to 20 mm, there's usually widespread rain falling from a broadscale cloud system, not just showers or thunderstorms popping up here or there. Read our blog on how to interpret the daily rainfall forecast.

Image: heavy rain over Noonamah, NT, by Chris Kent Photography.

Why rainfall forecasts can sometimes change

Rainfall forecasts from the Bureau use a combination of computer model output and forecaster intervention. When the forecast is for a period of four days or more there is often no physical evidence on current weather charts of the mechanism predicted to cause the cloud and rain on that day (e.g. a cold front). At this timescale forecasters are heavily reliant on the model output, and there may be variations from run to run. As newer observations become available to be fed into the computers, this can lead to changes in the rainfall forecast—so it's best to check back regularly for the latest updates.

As the timeframe for the forecast becomes shorter, then more certainty is displayed in the rainfall forecasts, because there's more physical evidence fed into the forecasting process.

The value of human touch

The isolated nature of thunderstorms poses significant challenges in forecasting the exact locations of where the heaviest rainfall will occur. In particular, summer storms are notoriously explosive and erratic, as at that time of year there's extra heat and energy in the atmosphere. There's also plenty of moisture and instability in summer to fuel the development of showers.

For a thunderstorm to form it needs a trigger, and this is where human forecast adds real value. A forecaster has an in-depth understanding of converging winds and local topography, such as surrounding mountains or hills, that can initiate thunderstorm formation. By applying their local knowledge and experience to the model output, forecasters can better reflect likely conditions on the day.

How is rainfall measured?

The standard instrument for measuring rainfall is the 203 mm (8 inch) rain gauge. This is essentially a circular funnel which collects the rain into a graduated and calibrated cylinder. Rainfall is measured to the nearest 0. 2 mm; anything less than this is recorded as a trace.

In modern automatic weather stations a Tipping Bucket Rain Gauge (TBRG) is used, which never need to be emptied and allow readings to be sent automatically.

The Bureau collects daily observations from approximately 6600 rainfall stations located across the country. These rainfall observations not only feed into our forecasting models to predict the weather into the future, but also help strengthen our long-term understanding of Australia's past climate.

Image: A rain guage is used to measure rainfall by volunteer observers at Bon Bon Station Reserve, SA. Credit: Kate Taylor.

How will I know if rain is on the way?

The Bureau's daily forecasts include the 'Chance of any rain' and a 'Possible rainfall' range, e.g. 4 to 15 mm. For a fuller picture of the day’s weather, the town forecasts are accompanied by a more detailed text description for the wider area around the town—with details such as whether it will be sunny or cloudy, the chance of thunderstorms or hail, and the time of day the weather is expected to change.

Using the BOM Weather app or MetEye you can also view 3-hourly rainfall forecasts for the next 24 hours.

We also issue severe weather warnings when heavy rain which may lead to localised flash flooding is expected. These may be issued separately, or included in our severe thunderstorm or tropical cyclone warnings.

More information

Right as rain: How to interpret the daily rainfall forecast

Precipitation glossary

Showers:

Usually begin and end suddenly. Relatively short-lived, but may last half an hour. Fall from cumulus clouds, often separated by blue sky. Showers may fall in patches rather than across the whole forecast area. Range in intensity from light to very heavy.

Rain:

In contrast to showers, rain is steadier and normally falls from stratiform (layer) cloud. Liquid water drops greater than 0.5 mm in diameter. Rain can range in intensity from light to very heavy.

Drizzle:

Fairly uniform precipitation composed exclusively of very small water droplets (less than 0.5 mm in diameter) very close to one another.

Comment. Tell us what you think of this article.

Share. Tell others.